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Abstract

The effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum

dots grown on GaAs is investigated with an atomistic valence-force-field model and an empirical

tight-binding model. By comparing a dot with and without a wetting layer, we find that the

inclusion of the wetting layer weakens the strain inside the dot by only 1% relative change, while it

reduces the energy gap between a confined electron and hole level by as much as 10%. The small

change in the strain distribution indicates that strain relaxes only little through the thin wetting

layer. The large reduction of the energy gap is attributed to the increase of the confining-potential

width rather than the change of the potential height. First-order perturbation calculations or,

alternatively, the addition of an InAs disk below the quantum dot confirm this conclusion. The

effect of the wetting layer on the wave function is qualitatively different for the weakly confined

electron state and the strongly confined hole state. The electron wave function shifts from the

buffer to the wetting layer, while the hole shifts from the dot to the wetting layer.
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I. INTRODUCTION

Nanometer-size semiconductor quantum dots are the subject of a rapidly developing area

in semiconductor research, as they provide an increase in the speed of operation and a

decrease in the size of semiconductor devices.[1] One of the prominent fabrication methods

for quantum dots is the Stranski-Krastanov process. This method uses the relief of the elastic

energy when two materials with a large lattice mismatch form an epitaxial structure. During

the epitaxial growth, the deposited material initially forms a thin epitaxial layer known as

the wetting layer. As more atoms are deposited on the substrate, the elastic energy becomes

too large to form a dislocation-free layer, leading to the formation of a cluster to relieve

some of the elastic energy. In this manner, a quantum dot is “self assembled” on top of the

wetting layer.

Although the self-assembled dot is grown on top of the wetting layer, some theoretical

studies omit the wetting layer from their simulations without much justification.[2, 3, 4, 5,

6, 7, 8, 9, 10] Other studies including the wetting layer discuss little about its influence

on the properties of the self-assembled dots.[11, 12, 13, 14, 15, 16, 17] This paper aims at

presenting a more complete discussion of the effect of wetting layers on the properties of self-

assembled quantum dots. In particular, we address two issues: (i) How does the wetting layer

affect the strain distribution in InAs/GaAs self-assembled dots? (ii) How does the wetting

layer affect the electronic structure of the quantum dots? To answer the first question, we

model the elastic energy with a valence-force-field (VFF) model developed by Keating.[18]

For the second question, we model the electronic structure with an sp3d5s∗ empirical tight-

binding model. The tight-binding parameters depend on the inter-atomic positions in order

to incorporate the strain effect. The VFF and tight-binding model enables us to describe

the dot geometry, interface, and strain effect at the atomic level.

II. MODEL

A. Strain profile

Within an atomistic VFF model,[18] the elastic energy depends on the length and angle

of the bonds that each atom makes with its nearest neighbors. For each atom i, the elastic
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FIG. 1: Geometry of an InAs quantum dot with a wetting layer. The dot is lens shaped with a

base diameter of 18 nm and a height of 2 nm. The wetting layer is 2 ML thick, which is roughly

0.6 nm. The line x and z are the lines along which the strain profiles are plotted in Figure 2.
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Here, ~rij is the vector connecting the atom i to one of its nearest neighbors j, r0 is the

unstrained bond length, and α and β are the atomic elastic constants for bond stretch and

bond bend, respectively. The atomic constants are related to the constants (C11, C12, C44)

of the continuum elasticity theory:

C11 =
α + 3β

a
, C12 =

α− β

a
, C44 =

4αβ

a(α + β)
, (2)

where a is the lattice constant. All three of the continuum constants cannot be perfectly

fitted with only two atomic constants α and β.[19] For this work, the atomic elastic constants

are taken from Ref.20. The resulting C11 and C12 from Eq. (2) fit the measured values within

a few percent error, while the resulting C44 differs from the experimental value by about

10% for GaAs and 20% for InAs.[21] Constants C11 and C12 are related to hydrostatic and

biaxial strain, while C44 is related to shear strain. For self-assembled quantum dots where

hydrostatic and biaxial stress are overall stronger than shear stress, an accurate description

of C11 and C12 is more important than that of C44. To improve the description of C44,

long-range Coulomb interactions should be included in the elastic energy.[19]

B. Electronic structure

In the framework of an empirical tight-binding model, the effective electron Hamiltonian

is described with a basis of sp3d5s∗ orbitals and two spin states per atom, including nearest-

neighbor interactions between the orbitals and including the spin-orbit coupling:

H =
∑

i,γ,s

ǫi,γ |i, γ, s〉〈i, γ, s|
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+
∑

i,j,γ,γ′,s

ti,γ;j,γ′|i, γ, s〉〈j, γ′, s|

+
∑

i,γ,γ′,s,s′

λiγs;iγ′s′|i, γ, s〉〈i, γ
′, s′|, (3)

where i and j index atoms, γ and γ′ index orbital types, and s and s′ index spins. Parameters

ǫi,γ denote the atomic energy, ti,γ;j,γ′ the neighbor-interaction, and λiγs;iγ′s′ the spin-orbit

coupling. The tight-binding parameters ǫi,γ, ti,γ;j,γ′, λiγs;iγ′s′ are first determined by fitting

the band edge energies and effective masses of the unstrained bulk InAs and GaAs crystals,

using a genetic optimization algorithm.[22, 23]

In order to incorporate the effect of the altered atomic environment due to strain, the

tight-binding parameters are modified. We follow the model developed by Boykin et al. as

follows.[22] For the neighbor-interaction energy ti,γ;j,γ′, the direction cosines in the Slater-

Koster table are used to describe the effect of the bond bend. The magnitude of the two-

center integrals in the Slater-Koster table is scaled to incorporate the effect of the bond

stretch: U = U0(d0/d)
η, where U0 is the unstrained-crystal two-center integral, and d0 and

d are the unstrained and strained bond lengths, respectively. For the atomic energy ǫi,γ,

the Löwdin orthogonalization procedure is used to obtain the modified atomic energy in a

strained environment:

ǫi,γ = ǫ
(0)
i,γ +

∑

j,γ′

Ki,γ;j,γ′

(t
(0)
i,γ;j,γ′)2 − (ti,γ;j,γ′)2

ǫ
(0)
i,γ + ǫ

(0)
j,γ′

. (4)

Here, j is the index for neighboring atoms. The superscript (0) represents the energies for

the unstrained crystal. The modified atomic energy depends both on neighbor-atom energies

and neighbor-interaction energy. The description of strained materials introduces two types

of new parameters: a scaling exponent η for each two-center integral and an atomic energy

shift constant K. The new parameters η and K are determined by fitting the band edge

energies under hydrostatic and uniaxial strain.[22, 23]

III. WETTING-LAYER EFFECT

We model a lens-shaped InAs quantum dot with a base diameter of 18 nm and a height of

2 nm, as shown in Fig. 1. The geometry of a quantum dot grown by molecular beam epitaxy

varies widely with the growth condition.[24, 25, 26, 27] The dot geometry chosen for this work

is within the experimentally achievable range.[24, 28] It is known that strain in InAs/GaAs
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FIG. 2: Strain profiles of a quantum dot without a wetting layer (QD) and with a wetting layer

(QD-WL) along [001] and [100]. The strain profiles are calculated by imposing a periodic boundary

condition to a large GaAs buffer (60x60x40 nm box) surrounding the quantum dot. Besides the

wetting layer region, the two strain profiles are almost identical with only 1% relative difference.

This shows that strain does not relax efficiently through the thin wetting layer, and consequently

the wetting layer does not change the strain distribution in the dot and the buffer.

heterostructures penetrates deeply into the GaAs substrate.[13, 20, 29] To accommodate

the long-ranged strain relaxation, we include a large GaAs buffer (60 x 60 x 40 nm box)

surrounding the InAs dot. A periodic boundary condition is imposed at the boundary for the

strain calculation. Minimizing the total elastic energy with respect to atomic displacements

yields a strain distribution in the InAs/GaAs self-assembled quantum dots.

Figure 2 shows the resulting strain profile along the growth direction and in the growth

plan (see lines x and z in Fig. 1). The strain penetrates into the GaAs buffer as deeply as

15 nm along the growth direction, and as widely as 5 nm in the growth plane. To illustrate

the effect of the wetting layer on the strain distribution, the strain profiles of the dot with

and without a wetting layer are plotted together in Figure 2. Besides the wetting layer

region, the two strain profiles are almost identical within about 1% relative difference. For

example, the inclusion of the wetting layer slightly reduces ǫzz from 0.0333 to 0.0330, and ǫxx

from -0.0653 to -0.0647 at the center of the dot. This small change shows that the strain does
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FIG. 3: Potential profiles of a quantum dot without a wetting layer (solid line) and a quantum

dot with a wetting layer (dashed line). The potential profiles are obtained by calculating the

conduction and valence band edges of the local strained unit cells along the growth direction [001].

Beside the wetting layer region, the band edges for the two nanostructures are almost identical

within 1 meV variation. This shows that the inclusion of the wetting layer primarily extends the

width of the confining potential well without modifying the height of the potential well.

not relax efficiently through the thin wetting layer. Figure 2 also shows that shear strain ǫxz

reaches 0.02 near the interface between InAs and GaAs in the growth plane.[30] Although

the interface geometry is different between the QD and the QD-WL structures, their shear

strain distribution is almost identical. Overall, the wetting layer does not change the strain

distribution in the InAs dot and the GaAs buffer in terms of both hydrostatic/biaxial strain

(ǫii) and shear strain (ǫij).

Within the strained structure, we calculate its local potential profile. The potential profile

is obtained by computing the band structure for a periodic lattice with the geometry of the

local strained unit cell. Figure 3 shows the conduction and valence band edges of each unit

cell along the growth direction [001]. The valence band edge of unstrained GaAs is set to

be zero as a reference energy. Strain effects are significant on both conduction and valence

bands. The conduction band edge in the strained dot shifts up from 0.6 eV (unstrained

InAs conduction band edge) to 1.0 eV, while the valence band edge splits to two branches,

the heavy- and light-hole bands separated by 0.2 eV. The valence band edge for unstrained
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TABLE I: Energies of the lowest electron (Ee) and the highest hole (Eh) levels, the corresponding

energy gaps (Egap), and energy spacings between the first and second lowest electron level (∆Ee)

and hole level (∆Eh) for an InAs quantum dot without a wetting layer (QD), an InAs quantum

dot with a wetting layer (QD-WL), an InAs quantum dot with an InAs disk beneath the dot

(QD-Disk), and an InAs quantum dot with a first-order correction due to the potential change in

the wetting layer region (QD-WL-Approx). The reference energy is the valence band edge of bulk

GaAs. The energy is in the unit of eV. The geometry of the quantum dot is illustrated in Fig. 1.

Structure Ee Eh Egap ∆Ee ∆Eh

QD 1.378 0.158 1.220 0.042 0.025

QD-WL 1.314 0.204 1.110 0.042 0.022

QD-Disk 1.337 0.192 1.145 0.047 0.024

QD-WL-Approx 1.334 0.180 1.154 0.043 0.022

InAs is 0.23 eV. The order of the heavy- and light-hole bands in the dot is opposite the

order in the buffer, because the biaxial components (ǫzz − 0.5(ǫxx + ǫyy)) of the dot strain

and the buffer strain have an opposite sign.

The difference in the potential profiles for a quantum dot without a wetting layer (QD)

and a dot with a wetting layer (QD-WL) is illustrated in Figure 3. The inclusion of the

wetting layer extends the width of the confining potential well, but hardly modifies the

height of the potential well. The change in the potential height is about 1 meV. The small

change is consistent with the small difference in their strain profiles. Due to the change of

the material, the potentials in the wetting layer region differ by 0.44 eV for the conduction

band, and by 0.36 eV for the heavy hole band.

We next calculate the confined single-particle energies for the QD and QD-WL structures.

The single-particle energies are calculated with a truncated GaAs buffer (30 x 30 x 15 nm

box) instead of the large GaAs buffer (60 x 60 x 40 nm box) used for the strain calculation.

This method takes an advantage of the spatial localization of the confined states, and signif-

icantly reduce the required computation time. An energy convergence of 1 meV is obtained

by varying the truncated buffer size. To eliminate spurious surface states in the artificially

truncated buffer, the dangling-bond energies of surface atoms are raised by 10 eV.[31] This

surface treatment efficiently eliminates all the spurious surface states without changing the
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confined states of interest.[31]

Table I lists the calculated single particle energies relative to the GaAs valence band

edge. As the wetting layer is included, the lowest electron energy shifts down by 64 meV

and the highest hole energy shifts up by 46 meV, leading to the reduction of the energy gap

by 110 meV (9% relative change). As a first-order effect, these shifts are attributed to an

increase of the width of the confinement potential in the vertical direction [001]. To estimate

the effect of the width change, we calculate the single-particle energies for a quantum dot

with a disk beneath the dot (QD-Disk). The disk thickness is the same as the thickness

of the wetting layer. The energies of QD-Disk are closer to those of QD-WL than to those

of QD. The difference between the energies of QD-Disk and QD-WL is attributed to the

wetting layer region beyond the disk region.

As another approximation for the wetting layer effect, we calculate the first-order correc-

tion due to the potential change in the wetting layer region (QD-WL-Approx) as follows.

Ee(Approx) = Ee(QD) − 0.44〈ψe|ŴL|ψe〉, (5)

Eh(Approx) = Ee(QD) + 0.36〈ψh|ŴL|ψh〉. (6)

Here, ŴL is the operator that projects the wave function onto the wetting layer region, and

ψe and ψh are the electron and hole wave functions obtained with the QD structure. Factors

0.44 eV and 0.36 eV are the shift of the effective electron and hole potential energy in the

wetting layer region, respectively. The resulting energies differ from the QD-WL energies by

about 20 meV. The relatively large energy difference between QD-WL-Approx and QD-WL

suggests that the wave function of QD is considerably different from that of QD-WL.

In addition to the energy gap, we also analyze the effect of the wetting layer on the

energy spacings between the electrons levels (∆Ee) and between the hole levels (∆Eh).

As listed in Table I, ∆Ee remains the same, while ∆Eh changes by 3 meV (12% relative

change). The energy spacings between the ground and excited electron (or hole) level are

determined mainly by the lateral confinement rather than the vertical confinement, because

lens-shaped self-assembled quantum dots have a large aspect ratio. No change in ∆Ee

suggests that the wetting layer does not change the effective lateral confinement range for

the electron. In contrast, the decrease of ∆Eh suggests that the wetting layer increases the

lateral confinement range for the hole.

We further study the energy gap and spacing change with respect to the ratio γh of the
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TABLE II: Distribution of the lowest electron and the highest hole wave functions for a quantum

dot without a wetting layer (QD) and a quantum dot with a wetting layer (QD-WL). The weights

of the wave function in the InAs dot, the InAs wetting layer, and the GaAs buffer region are listed.

Note that the weight in the wetting layer for QD is the weight in the region where a wetting layer

would be located.

Electron Hole

Structure Dot WL Buffer Dot WL Buffer

QD 0.43 0.10 0.47 0.82 0.06 0.12

QD-WL 0.43 0.15 0.42 0.72 0.17 0.11

dot height to the wetting-layer height. For a quantum dot with a larger height (4 nm) and

the same base diameter (18 nm), the inclusion of the wetting layer (still 2 ML thick) leads

to the change of the gap from 1.103 eV to 1.050 eV (5% change), ∆Ee from 0.051 eV to

0.047 eV (8% change), and ∆Eh from 0.023 eV to 0.019 eV (17% change). In comparison to

the small dot discussed above (see Table I), the change in the gap is smaller for the large dot,

while the change in the spacing is larger. This illustrates that the effect of the wetting layer

on the energy gap and spacing is sensitive to the height ratio γh. The smaller change in the

gap can be explained by the small relative change in the confinement potential width in the

vertical direction. The larger change in the spacing is related to the fact that the electron

and hole are more localized in the large dot than in the small dot. When the wetting layer is

included, the localized wave functions spread to the wetting layer, leading to a larger spatial

extent in the lateral direction and thus to a small energy spacing.

Finally, since the wetting layer provides an extra space for the electron and hole to be

confined, we investigate how the electron and hole wave functions respond to the extra space.

The change in the wave functions is analyzed in two ways. First, the wave functions are

integrated in three regions: the dot, the wetting layer, and the buffer. Table II lists the

resulting weights in the three regions. The electron wave function is weakly confined in the

dot region, whereas the hole wave function is strongly confined in the dot. The difference

between the electron and hole wave function distributions is related to the light electron mass

and the heavy hole mass. When the wetting layer is included, the electron wave function

shifts from the buffer to the wetting layer. In contrast, the hole wave function shifts from
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TABLE III: Spatial extents of the lowest electron and the highest hole wave functions for a quantum

dot without a wetting layer (QD) and a quantum dot with a wetting layer (QD-WL). The QD base

diameter is 18 nm, the QD height 2 nm, and the WL thickness 2 ML. The spatial extents are

estimated with ∆r =
√

〈(r − r0)2〉, ∆x =
√

〈(x − 〈x〉)2〉, and ∆z =
√

〈(z − 〈z〉)2〉, where r0 is the

position vector of the center of mass, that is given by (〈x〉, 〈y〉, 〈z〉). The listed 〈z〉 is the distance

of the center of mass from the dot base, and 〈x〉 and 〈y〉 coincide with the dot center. The listed

values are in the unit of nm.

Structure State ∆r ∆x ∆z 〈z〉

QD Electron 4.99 3.29 1.75 0.71

QDWL Electron 4.97 3.36 1.54 0.41

QD Hole 3.43 2.37 0.70 0.75

QDWL Hole 3.89 2.70 0.73 0.45

the dot to the wetting layer. We find that for the large dot discussed above (height 4 nm),

the electron wave function becomes more confined in the dot region and hence the effect of

the wetting layer on the electron wave function distribution becomes similar to that on the

hole wave function. This shows that the shift trend of the wave function due to the wetting

layer is related to the degree of the localization of the wave function.

Second, the spatial extents of the wave functions are evaluated with
√

〈(r− r0)2〉,
√

〈(x− 〈x〉)2〉, and
√

〈(z − 〈z〉)2〉, where r0 is the center of mass given by (〈x〉, 〈y〉, 〈z〉).

The calculated expectation values are listed in Table III. The spatial extent of the electron

function is relatively unchanged, while the extent of the hole wave function increases by

0.46 nm. These trends are consistent with the wave function weight shifts listed in Table II.

The hole wave function spreads from the dot to the wetting layer, leading to a larger spa-

tial extent in both lateral and vertical dimensions. In contrast, the electron wave function

moves from the buffer to the wetting layer, leading to a smaller spatial extent in the vertical

dimension and a larger spatial extent in the lateral dimension.

We also observe from the center of mass 〈z〉 that both the electron and hole wave function

move toward the bottom of the dot by 0.3 nm, when the wetting layer is included. However,

the relative distance between the electron’s and hole’s center of mass is unchanged. For both

QD and QD+WL, the hole’s center of mass is above the electron’s by 0.04 nm, which was
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observed by a Stark effect experiment[32] and also predicted by an empirical psudopotential

calculation.[16] It is interesting to note that an eight-band k · p calculation predicts the

opposite electron-hole alignment.[7] The k ·p model produces the measured alignment, hole

above electron, only when gallium diffusion is introduced near the top of the dot.[7]

IV. DISCUSSION AND CONCLUSION

In summary, the effect of wetting layers on the strain and electronic structure of InAs

self-assembled quantum dots is investigated with an atomistic valence-force-field model and

an sp3d5s∗ empirical tight-binding model. By comparing a dot with and without a wetting

layer, we find that the inclusion of the wetting layer weakens the strain inside the dot by

only 1% relative change while it reduces the energy gap between the confined electron and

hole states by as much as 10%.

The small change in the dot strain indicates that strain relaxes little through the thin

wetting layer. Overall, the wetting layer does not change the strain distribution in the self-

assembled quantum dot. As a consequence, we speculate that the phonon spectrum of the

quantum dots can be efficiently modeled without including a wetting layer, since the phonon

spectrum is modified from the bulk spectrum predominantly due to strain rather than size

quantization.[11, 13, 28, 33, 34]

The large reduction of the energy gap in the quantum dot with a wetting layer is at-

tributed to the increase in the width of the confining potential rather than the change in the

height of the potential. First order perturbation calculations or, alternatively, the addition

of an InAs disk below the quantum dot confirm this conclusion. In a thin quantum dot,

the effect of the wetting layer on the wave function is qualitatively different for the weakly

confined electron and the strongly confined hole states. The electron wave function moves

from the buffer to the wetting layer, while the hole wave function spreads from the dot to

the wetting layer region. The redistribution of the wave function causes a decrease in the

hole level spacing ∆Eh, since the effective lateral confinement range of the hole increases.

Since the wetting layer considerably affects both the single-particle energy and wave func-

tion, the wetting layer is also expected to influence the electrical and optical properties of

self-assembled quantum dots. For example, the overlap between the electron and hole wave

function in the wetting layer increases fourfold when the wetting layer is included (see Ta-
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ble. II). This will lead to different oscillator strengths and photoluminescence polarization

for inter-band transitions. Furthermore, the spatial extent of the hole wave function in-

creases, while that of the electron wave function remains the same (see Table. III). This will

lead to a weaker excitonic binding energy. Finally, the spatial extents of the wave functions

in the vertical direction determines the coupling between stacked quantum dots. When the

wetting layer is included, the vertical extent of the hole wave function increases, while that

of the electron wave function decreases (see Table III). This will lead to a larger inter-dot

coupling for hole levels but a smaller inter-dot coupling for electron levels. Therefore, in

order to accurately model the electric and optical properties of a single self-assembled dot

and coupled quantum dots, the wetting layer should be included in the model.
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